On Minimal, Strongly Proximal Actions of Locally Compact Groups
نویسنده
چکیده
Minimal, strongly proximal actions of locally compact groups on compact spaces, also known as boundary actions, were introduced by Furstenberg in the study of Lie groups. In particular, the action of a semi-simple real Lie group G on homogeneous spaces G/Q where Q ⊂ G is a parabolic subgroup, are boundary actions. Countable discrete groups admit a wide variety of boundary actions. In this note we show that if X is a compact manifold with a faithful boundary action of some locally compact group H, then (under some mild regularity assumption) the group H, the space X, and the action split into a direct product of a semi-simple Lie group G acting on G/Q and a boundary action of a discrete countable group.
منابع مشابه
Reiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
Universal Properties of Group Actions on Locally Compact Spaces
We study universal properties of locally compact G-spaces for countable infinite groups G. In particular we consider open invariant subsets of the G-space βG, and their minimal closed invariant subspaces. These are locally compact free G-spaces, and the latter are also minimal. We examine the properties of these G-spaces with emphasis on their universal properties. As an example of our results,...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002